Multi-scale Stacked Sequential Learning

نویسندگان

  • Oriol Pujol
  • Eloi Puertas
  • Carlo Gatta
چکیده

Sequential learning is the discipline of machine learning that deals with dependent data such that neighboring labels exhibit some kind of relationship. The paper main contribution is two-fold: first, we generalize the stacked sequential learning, highlighting the key role of neighboring interactions modeling. Second, we propose an effective and efficient way of capturing and exploiting sequential correlations that takes into account long-range interactions. We tested the method on two tasks: text lines classification and image pixel classification. Results on these tasks clearly show that our approach outperforms the standard stacked sequential learning as well as state-of-the-art conditional random fields. & 2011 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classifying Objects at Different Sizes with Multi-Scale Stacked Sequential Learning

Sequential learning is that discipline of machine learning that deals with dependent data. In this paper, we use the Multi-scale Stacked Sequential Learning approach (MSSL) to solve the task of pixel-wise classification based on contextual information. The main contribution of this work is a shifting technique applied during the testing phase that makes possible, thanks to template images, to c...

متن کامل

Multi-class Multi-scale Stacked Sequential Learning

One assumption in supervised learning is that data is independent and identically distributed. However, this assumption does not hold true in many real cases. Sequential learning is that discipline of machine learning that deals with dependent data. In this paper, we revise the Multi-Scale Sequential Learning approach (MSSL) for applying it in the multi-class case (MMSSL). We have introduced th...

متن کامل

Spatial codification of label predictions in multi-scale stacked sequential learning: a case study on multi-class medical volume segmentation

In this study, the authors propose the spatial codification of label predictions within the multi-scale stacked sequential learning (MSSL) framework, a successful learning scheme to deal with non-independent identically distributed data entries. After providing a motivation for this objective, they describe its theoretical framework based on the introduction of the blurred shape model as a smar...

متن کامل

Generalized Stacked Sequential Learning

In many supervised learning problems, it is assumed that data is independent and identically distributed. This assumption does not hold true in many real cases, where a neighboring pair of examples and their labels exhibit some kind of relationship. Sequential learning algorithms take benefit of these relationships in order to improve generalization. In the literature, there are different appro...

متن کامل

Learning to Detect Stent Struts in Intravascular Ultrasound

In this paper we tackle the automatic detection of struts elements (metallic braces of a stent device) in Intravascular Ultrasound (IVUS) sequences. The proposed method is based on context-aware classification of IVUS images, where we use Multi-Class Multi-Scale Stacked Sequential Learning (MSSL). Additionally, we introduce a novel technique to reduce the amount of required contextual features....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009